
EnCounter:
On Breaking the Nonce Barrier in Differential

Fault Analysis with a Case-Study on PAEQ

Dhiman Saha, Dipanwita Roy Chowdhury

Crypto Research Lab,
Department of Computer Science and Engineering,

IIT Kharagpur, India
{dhimans,drc}@cse.iitkgp.ernet.in

Presented By:

Santosh Ghosh

CHES 2016
UCSB, California, USA

Nonce

’Lets start with some Nonsense Nonce-Sense’

Nonce

I Often expanded as (N)umber-Once

I Nonce based encryption : Formalized by Rogaway

Basic Idea

The security proofs rely on the pre-condition of the uniqueness of
the nonce in every instantiation of the cipher

I So, repetition is prohibited
I Allowed in certain designs

I “With terms and conditions applied”

Fault Analysis

Inject - Observe - Analyze

Fault Analysis

I A very popular Side-channel Attack

I Attack the implementation

Basic Idea

Cryptanalyzing a cipher by observing its behaviour under the
influence of faults.

I So, first inject faults in a cryptosystem

I Then exploit information leaked by faulty output

I Most effective analysis strategy :

DFA ↔ Differential Fault Analysis

Differential Fault Analysis (DFA)

The Assumption : Replaying criterion

The attacker must be able to induce faults while replaying a
previous fault-free run of the algorithm.

The Possibility

Performing a differential analysis
starting from an intermediate

state of the cipher.

The Implication

Equivalent to cryptanalyzing a
round-reduced version of the

cipher.

What happens in the presence of a
Nonce?

Hint: Assumption Violated!

DFA + Nonce?

I Replaying Criterion no longer holds

I DFA fails

I Nonce =⇒ Automatic DFA Counter-measure

The Nonce Barrier

How to counter the counter-measure?

Misuse - Bypass - Avoid

DFA in the presence of Nonce

Exploiting Nonce-Misuse Resistance

↑ INDOCRYPT14: Concept of faulty collisions demonstrated to
apply DFA on nonce misuse resistant AE scheme APE
↓ Solution restricted to a single scheme

Nonce-Bypass by Attacking Decryption

↑ SAC15: DFA applied on APE decryption exploiting Release of
Unverified Plaintexts (RUP) property
↓ Possible applications restricted to RUP schemes

Avoiding the Nonce by using Internal DFA

↑ This Work: Introduces internal differential fault analysis
↑ Applies to parallelizable ciphers in the counter mode

Introducing
Internal Differential Fault Analysis

“Divide and Rule”

Internal Differential Fault Analysis (IDFA)

Primary Target

Modes that use easily cancelable differences between invocations of
a cryptographic primitive like a block cipher

Example: Parallelizable ciphers using the counter mode

I Inputs differ only in the counter value

Main Idea

I Use first fault to cancel the input difference

I Use a second fault to generate a more standard fault attack

Requires a single run of the algorithm =⇒ Nonce-independence

Parallel Cipher in Counter Mode Generic-View

IDFA Primary fault in counter

IDFA The Counter-Collision

IDFA Secondary fault in same branch

IDFA Exploiting internal differentials

The Case-Study :
From Generic to Specific

“We Pick PEAQ!”

PAEQ

Why pick PAEQ?

I Meets basic criteria : Parallelizable + Counter Mode

I Underlying permutation follows AES =⇒ An edge w.r.t DFA

I The mode of operation

I Among 30 Round 2 candidates of CAESAR

Due to the mode of operation:
Inputs to the internal permutation are only linked by counters

This property makes PAEQ a prime candidate to apply the concept
of fault based internal differentials proposed in this work.

PAEQ Bio

PAEQ ↔ Parallelizable Authenticated Encryption based on
Quadrupled AES

I An Authenticated Encryption scheme

I Fully parallelizable + On-line

I Introduced by Biryukov and Khovratovich in ISC 2014
I Along with a new generic mode of operation PPAE

I Parallelizable Permutation-based Authenticated Encryption

I And an AES based permutation AESQ

I Security level up to 128 bits & higher, equal to the key length

Breaking News

Round-3 CAESAR Candidates Announced.
PAEQ did not make it!

PAEQ Encryption

PAEQ Authentication

PAEQ Handling Associated Data

PAEQ Final Tag Generation

AESQ The Internal Permutation

I Internal state size of 512 bits

I Comprises of 4 sub-states of 128 bits each

I Sub-states correspond to AES state matrix

I AESQ is a composition of 20 round functions with a Shuffle
operation after every 2 rounds.

I Every round applies a composition of four bijective functions
which are basically the standard AES round operations

4-Round PAEQ Diffusion of Internal Difference

Observation

Two parallel branches of PAEQ with
the same domain separator differ

only in the counter value.

I PAEQ encryption phase

I Any two parallel branches

I Internal difference in the input
limited to a byte

I Observe that bytes become
related after Round 3

I These relations lead to a
distinguisher

4-Round Internal-Differential Distinguisher

I Distinguisher works by verifying byte-interrelations after
inverting known values of fourth round

I Used to develop concept of Fault Quartets

The Fault Model

“equalize then differentiate”

The Fault Model Two Random Byte Faults

equalizer

I In last byte of Counter

I Intended for Counter collision
of two branches

differentiator

I Anywhere in the state

I Creates one-byte internal
difference in Round-17 input

Note: Distinguisher shown earlier can now be verified from Round-20

Introducing
Fault Quartets

Finding fault-free branch using faulty branch

Fault Quartet

I Configuration of four internal states : Qi ,j = {s, s#, t, t#}

I s, t → branch input states

I s ⊕ t = 0

I s# = AESQ16(s),
t# = AESQ16(t)

I s# and t# have an internal
difference of 1 byte

I Generated using equalizer and differentiator faults

I Almost guaranteed1 for a 255 complete block message

I Located by verifying the 4-round distinguisher from last round

I In turn reveals location of fault-free branch

1Refer paper for details

EnCounter

Fault Analysis of PAEQ using Internal Differentials

EnCounter High-level Description

I Run PAEQ on a plaintext with 255 complete blocks.

I Inject the equalizer and differentiator faults in any
branch i in the encryption phase.

I Locate corresponding fault-free branch j by finding the Fault
Quartet

EnCounter Input

{
P = P1||P2|| · · · ||Pi || · · · ||Pj || · · · ||P255
C = C1||C2|| · · · ||C?i || · · · ||Cj || · · · ||C255||Tag?

Attack works on primary PAEQ variants: paeq-64/80/128

EnCounter High-level Description

I Initiate InBound phase using plaintext-ciphertext blocks of
both branches

I Guess2 diagonal of differentiator fault to compute
column vectors for the state after Round-19 Subbytes

I Initiate OutBound phase using these column vectors to recover
candidates of all substates after Round-20

I Finally, repeat InBound phase for every guess of the diagonal
and consequently OutBound too

I Results accumulated as substate vectors for all Round-20
substates

I Cross-product of these vectors gives reduced state-space after
Round-20 which is used to reveal the key

2Not required for paeq-64

EnCounter InBound

Refer paper for notations

EnCounter OutBound

Refer paper for notations

Experimental Results

Recall : Reduced state-space after Round-20 gives the complexity

I Computer simulations performed over 1000 randomly chosen
nonces, keys.

I Sizes of substate vectors along with size of the reduced
state-space were noted after every experiment

I Statistical markers were studied

I Interestingly, we get similar reduction for both paeq-64 &
paeq-80

PAEQ Security-Level Reduced State-space

paeq-64 64 bits 216.14

paeq-80 80 bits 216.14

paeq-128 128 bits 250 (estd.)

Results EnCounter (paeq-64)

240 256 272 288 496 512 528 544 560 576 1024
0

100

200

300

400

500

600

700

560

292

 52
 12 26 34 8 6 2 6 2

|[s1]v| 	 µ = 271.17 	 σ = 82.10

1
0

200

400

600

800

1000

1200

1000

|[s2]v| 	 µ = 1.00 	 σ = 0.00

240 256 272 288 304 496 512 528 544 560
0

100

200

300

400

500

600

700

514

352

 56
 6 2 22 22 14 8 4

|[s3]v| 	 µ = 267.20 	 σ = 69.38

1 2
0

200

400

600

800

1000 996

 4

|[s4]v| 	 µ = 1.00 	 σ = 0.06

0

100

200

300

400

57
60

0

61
44

0

65
28

0

65
53

6

69
12

0

69
63

2

72
96

0

73
72

8

73
98

4

11
52

00

11
90

40

12
28

80

12
67

20

12
69

76

13
05

60

13
10

72

13
44

00

13
51

68

13
82

40

13
92

64

14
33

60

14
74

56

24
57

60

25
39

52

Reduced State−space Size 	 µ = 72292.35 	 σ = 26409.61

294
322

 48

108

 8
 48

 2 10 4 2
 32 38

 18 14 8 14 2 4 2 10 4 4 2 2

Bar diagram for sizes of substate vectors and reduced state-space

Results EnCounter (paeq-80)

240 256 272 288 496 512 528 544 560 576
0

100

200

300

400

500

600

700

559

299

 58
 10 30 25 7 6 5 1

|[s1]v| 	 µ = 267.38 	 σ = 70.64

1 2
0

200

400

600

800

1000 998

 2

|[s2]v| 	 µ = 1.00 	 σ = 0.04

240 256 272 288 496 512 528 544 560 1008 1024 1072
0

100

200

300

400

500

600

700

544

305

 69
 5 24 24 13 8 5 1 1 1

|[s3]v| 	 µ = 270.16 	 σ = 82.66

1 2
0

200

400

600

800

1000 993

 7

|[s4]v| 	 µ = 1.01 	 σ = 0.08

0

100

200

300

400

57
60

0
61

44
0

65
28

0
65

53
6

69
12

0
69

63
2

73
72

8
78

33
6

11
52

00
11

90
40

12
28

80
12

67
20

12
69

76
13

05
60

13
10

72
13

44
00

13
49

12
13

51
68

13
82

40
13

92
64

14
33

60
14

36
16

14
79

68
15

23
20

24
57

60
25

39
52

25
72

80
26

21
44

27
03

36
27

41
76

Reduced State−space Size 	 µ = 72578.30 	 σ = 28201.68

301
327

 74 88

 7
 38

 6 2 3
 33 31

 8 16 7 15 5 4 10 1 11 4 1 1 1 1 1 1 1 1 1

Bar diagram for sizes of substate vectors and reduced state-space

Epilogue

I Introduced notion and scope of fault analysis based on
internal differentials

I Proposed approach requires only one run of the algorithm
thereby overcoming the nonce barrier of DFA

I Mount EnCounter on a single instance of PAEQ using two
random byte faults exploiting a 4-round internal-differential
property

I Achieve average key-space reductions of around 216 for both
paeq-64/80 and estimated about 250 for paeq-128

I Presented the first analysis of PAEQ

15th August: PAEQ is out of Round-3 of CAESAR Competition!

Thanks!

Sorry
for missing this

“EnCounter”
with you all.

Queries

crypto@dhimans.in

